## **KEYWORDS IN TURBOMACHINERY**

Occurrence of keywords in individual articles according to their number in the List of articles. If the article number is in bold, it means that the keyword is already mentioned on the first page of the article (i.e. in the title of the article and chapters and in the description of the problems). So far only article No. 1. - 3., and 14. are indexed.

**Note:** Articles 5-12, and 15-17 have not yet been translated into English.

|                            |    |    |          |   |   |   |   |   |    | Air  | •   |   |   |     |   |   |   |
|----------------------------|----|----|----------|---|---|---|---|---|----|------|-----|---|---|-----|---|---|---|
|                            | _  | -  | _        | - | - | - | - | - | _  | -    | -   | _ | - | 14. | _ | - | _ |
|                            |    |    |          |   |   |   |   |   |    |      | ••  |   |   |     |   |   |   |
|                            |    |    |          |   |   |   |   |   | A  | irfo | DIL |   |   |     |   |   |   |
| Base airfoil               | -  | -  | 3.<br>3. | _ | - | - | _ | - | -  | _    | _   | - | _ | -   | _ | _ | _ |
|                            |    |    |          |   |   |   |   |   | An | ım(  | nia | ì |   |     |   |   |   |
| Ammonia                    | _  | -  | -        | - | - | - | - | - | -  | -    | -   | - | - | 14. | - | - | _ |
|                            |    |    |          |   |   |   |   |   |    |      |     |   |   |     |   |   |   |
|                            |    |    |          |   |   |   |   |   | A  | ۱ng  | le  |   |   |     |   |   |   |
| Angle of absolute velocity | 1. | -  | -        | - | - | - | - | - | -  | -    | -   | - | - | _   | - | _ | _ |
| Angle of attack            | _  | -  | 3.       | _ | - | - | _ | - | -  | -    | _   | _ | - | _   | _ | - | _ |
| Angle of deviation         | _  | -  | 3.       | _ | - | - | _ | - | -  | _    | -   | _ | _ | _   | _ | - | _ |
| Angle of relative velocity | 1. | -  | -        | - | - | - | - | - | -  | -    | -   | - | - | -   | - | - | - |
| Stagger angle              | -  | -  | 3.       | _ | - | - | _ | - | -  | -    | -   | - | - | -   | - | - | - |
| Velocity angle             | _  | -  | 3.       | - | - | - | - | - | -  | -    | -   | - | - | -   | - | - | - |
|                            |    |    |          |   |   |   |   |   |    |      |     |   |   |     |   |   |   |
|                            |    |    |          |   |   |   |   |   | Ba | alar | ıce |   |   |     |   |   |   |
| Energy balance             | 1. | -  | -        | - | - | _ | _ | _ | -  | _    | -   | - | - | 14. | - | - | _ |
|                            |    |    |          |   |   |   |   |   |    |      |     |   |   |     |   |   |   |
|                            |    |    |          |   |   |   |   |   | В  | eari | ng  |   |   |     |   |   |   |
| Axial bearing              | 1. | 2. | -        | _ | - | - | _ | - | -  | _    | -   | _ | _ | _   | _ | - | _ |
| Radial bearing             | 1. | -  | -        | - | - | - | - | - | -  | -    | -   | - | - | -   | - | - | - |
|                            |    |    |          |   |   |   |   |   |    |      |     |   |   |     |   |   |   |
|                            |    |    |          |   |   |   |   |   | E  | Blac | le  |   |   |     |   |   |   |
| 701 1 - H1 - C             |    | -  | 3.       | _ | - | _ | - | - | -  | -    | -   | - | - | -   | - | - | - |
| Blade oscillation          | 1. |    | _        | _ | _ | _ | _ | _ | _  | _    | _   | - | _ | _   | _ | _ | _ |
| Blade root                 | 1. | -  | -        | - | - | - | - | - | -  | -    | -   | - | _ | _   | - | _ | _ |
|                            |    |    |          |   |   |   |   |   |    |      |     |   |   |     |   |   |   |

| Number of blades      |      | 3            | <br>        |     |  |
|-----------------------|------|--------------|-------------|-----|--|
| Radial blade          |      | 3            | <br>        |     |  |
| Rotatable blades      |      | 3            | <br>        |     |  |
| Straight blade        | 1    | 3            | <br>        |     |  |
| Twisted blades        | 1    | 3            | <br>        |     |  |
| Untwisting of blades  |      | 3            | <br>        |     |  |
| onewishing or orange  |      | •            |             |     |  |
|                       |      |              | D 1         |     |  |
|                       |      |              | Branche     |     |  |
| Axial branches        |      | 3            | <br>        |     |  |
| Branches              | 1    | 3            | <br>        |     |  |
| Side branches         |      | 3            | <br>        |     |  |
|                       |      |              |             |     |  |
|                       |      |              | Calculation |     |  |
| 1D calculation        | 1    |              | <br>        |     |  |
| 2D calculation        | 1    |              | <br>        |     |  |
| 3D calculation        | 1    |              | <br>        |     |  |
| Calculation of radial |      |              | <br>        | 14. |  |
| rotor                 |      |              |             |     |  |
|                       |      |              | ~ .         |     |  |
|                       |      |              | Camber      |     |  |
|                       |      | 3            | <br>        |     |  |
|                       |      |              |             |     |  |
|                       |      |              | Cascade     |     |  |
| Blade cascade         | 1    |              | <br>        |     |  |
| Confuser cascade      |      | 3            | <br>        |     |  |
| Density of profile    |      | 3            | <br>        |     |  |
| cascade               |      | ٥.           |             |     |  |
| Diffuser cascade      |      | 3            | <br>        |     |  |
| Pressureless cascade  |      | 3            | <br>        |     |  |
| Profile cascade       | 1    | 3            | <br>        |     |  |
| Width of profile      |      | 3 <b>.</b> - | <br>        |     |  |
| cascade               |      |              |             |     |  |
|                       |      |              | Casing      |     |  |
| Spiral aggings        |      | 3            | Casing      |     |  |
| Spiral casings        | - 2. | 3            | <br>        |     |  |
|                       |      |              | ~           |     |  |
|                       |      |              | Cavitation  |     |  |
|                       |      | 3            | <br>        |     |  |
|                       |      |              |             |     |  |
|                       |      |              | Chord       |     |  |
|                       |      | 3            | <br>        |     |  |
|                       |      | -            |             |     |  |
|                       |      |              | Caaffiniant |     |  |
| 7                     |      |              | Coefficient |     |  |
| Zweifel coefficient   |      | 3            | <br>        |     |  |
|                       |      |              |             |     |  |

|                                   |    |     |     |     |    |     |     | ( | Com | nre      | essi      | on             |   |    |   |   |
|-----------------------------------|----|-----|-----|-----|----|-----|-----|---|-----|----------|-----------|----------------|---|----|---|---|
| Adiabatic compression             | _  | _   | _   | _   | _  | _   | _   | _ | _   | <u>-</u> | _         | _              | _ | 14 | _ | _ |
| Air compression                   | _  | _   | _   | _   | _  | _   | _   | _ | _   | _        | _         | _              | _ | 14 | _ | _ |
| Helium compression                | _  | _   | _   | _   | _  | _   | _   | _ | _   | _        | _         | _              | _ | 14 | _ | _ |
| Isoentropic compression           | -  | -   | -   | -   | -  | -   | -   | - | -   | -        | -         | -              | - | 14 | - | - |
| Methane compression               | -  | _   | _   | -   | _  | -   | -   | - | -   | -        | -         | -              | _ | 14 | _ | _ |
| Multi-stage compression           | -  | -   | -   | -   | -  | -   | -   | - | _   | -        | -         | -              | - | 14 | - | - |
| Polytropic compression            | -  | -   | -   | -   | -  | -   | -   | - | -   | -        | -         | -              | - | 14 | - | - |
| Reversible polytropic compression | -  | -   | -   | -   | -  | -   | -   | - | -   | -        | -         | -              | - | 14 | - | - |
| Steam compression                 | -  | _   | -   | -   | _  | -   | _   | _ | -   | -        | _         | -              | - | 14 | - | _ |
|                                   |    | _   | _   |     |    |     |     |   | onc | den      | sati<br>- | <u>on</u><br>– |   | 14 |   |   |
|                                   |    |     |     |     |    |     |     |   |     |          |           |                |   |    |   |   |
|                                   |    |     |     |     |    |     |     |   | Co  | nfu      | ıser      | •              |   |    |   |   |
| Bladeless confuser                | se | е В | lad | ele | ss | sta | tor |   |     |          |           |                |   |    |   |   |
|                                   |    |     |     |     |    |     |     |   |     |          |           |                |   |    |   |   |
|                                   |    |     |     |     |    |     |     | C | ont | am       | ina       | nts            |   |    |   |   |
|                                   | _  | _   | 3.  | _   | _  | _   | _   | _ | _   | _        | _         | -              | _ |    | _ | _ |
|                                   |    |     |     |     |    |     |     |   |     |          |           |                |   |    |   |   |
|                                   |    |     |     |     |    |     |     |   | C   | ooli     | ing       |                |   |    |   |   |
|                                   | -  | -   | _   | -   | -  | -   | -   | - | -   | -        | -         | -              | - | 14 | - | _ |
| Casing cooling                    | -  | _   | _   | -   | _  | _   | _   | - | _   | _        | -         | _              | _ | 14 | _ | _ |
| Cooling by coolant injection      | _  | _   | _   | -   | _  | _   | -   | - | _   | _        | -         | _              | _ | 14 | _ | _ |
| Cooling effectiveness             | -  | -   | -   | -   | -  | -   | -   | - | -   | -        | -         | -              | - | 14 | _ | - |
| Intercooling                      | -  | -   | -   | -   | -  | -   | -   | - | -   | -        | -         | -              | - | 14 | - | _ |
|                                   |    |     |     |     |    |     |     |   |     |          |           |                |   |    |   |   |
|                                   |    |     |     |     |    |     |     |   | Coc | ordi     | inat      | e              |   |    |   |   |
| Cylindrical coordinate system     | 1. | 2.  | -   | -   | -  | -   | -   | - | -   | -        | -         | -              | - |    | - | - |
|                                   |    |     |     |     |    |     |     |   | D   | iffu     | ser       |                |   |    |   |   |
| Bladeless diffuser                | se | e B | lad | ele | ss | sta | tor |   |     |          |           |                |   |    |   |   |
|                                   |    |     |     |     |    |     |     |   |     |          |           |                |   |    |   |   |
|                                   |    |     |     |     |    |     |     |   | Di  | rect     | tion      | 1              |   |    |   |   |
| Meridional direction              | 1. | 2.  | _   | _   | _  | _   | _   | _ | -   | -        | -         | _              | _ |    |   |   |
|                                   | -  | ,   |     |     |    |     |     |   |     |          |           |                |   |    |   |   |
|                                   |    |     |     |     |    |     |     |   |     | Dis      | c         |                |   |    |   |   |
| Shroud disc                       | -  | -   | 3.  | -   | -  | -   | -   | - | -   | -        | -         | -              | - |    | - | - |
|                                   |    |     |     |     |    |     |     |   |     |          |           |                |   |    |   |   |

|                       |                 |              |    |    |   |   |   |   | ]   | Edg          | ge           |   |   |     |   |   |   |
|-----------------------|-----------------|--------------|----|----|---|---|---|---|-----|--------------|--------------|---|---|-----|---|---|---|
| Leading edge          | 1.              | _            | _  | _  | - | - | - | _ | -   | -            | -            | - | - | -   | _ | _ | _ |
| Trailing edge         | 1.              | _            | -  | -  | - | - | - | - | -   | -            | -            | - | - | -   | - | - | - |
|                       |                 |              |    |    |   |   |   |   |     |              |              |   |   |     |   |   |   |
|                       |                 |              |    |    |   |   |   |   | F   | Effe         | ct           |   |   |     |   |   |   |
| Coanda effect         | -               | -            | 3. | -  | - | - | - | - | -   | -            | -            | - | - | -   | - | - | - |
|                       |                 |              |    |    |   |   |   |   |     |              |              |   |   |     |   |   |   |
|                       |                 |              |    |    |   |   |   |   | Eff | ficie        | ency         | y |   |     |   |   |   |
| Euler efficiency      | -               | 2.           | -  | -  | - | - | - | - | -   | -            | -            | - | - | -   | - | - | - |
| Hydraulic efficiency  | 1.              | -            | _  | -  | - | - | - | - | -   | -            | -            | - | - | -   | - | - | - |
| Internal efficiency   | 1.              | 2.           | -  | -  | - | - | - | - | -   | -            | -            | - | - | 14. | - | - | - |
| Isentropic efficiency | -               | -            | -  | -  | - | - | - | - | -   | -            | -            | - | - | 14. | - | - | - |
| Isothermal efficiency | _               | -            | -  | -  | - | - | - | - | -   | -            | -            | _ | - | 14. | _ | - | - |
| Polytropic efficiency | -               | -            | -  | -  | - | - | - | - | -   | -            | -            | - | - | 14. | - | - | - |
| Thermodynamics        | 1.              | -            | -  | -  | - | - | - | - | -   | -            | -            | - | - | -   | _ | - | - |
| efficiency            |                 |              |    |    |   |   |   |   |     |              |              |   |   |     |   |   |   |
|                       |                 |              |    |    |   |   |   |   | E   | ner          | gie          |   |   |     |   |   |   |
| Head of energy        | $\frac{}{1}$ .  | _            | _  | _  | _ | _ | _ | _ | _   | _            | <del>5</del> | _ |   | _   | _ |   |   |
| rieda or energy       | -•              |              |    |    |   |   |   |   |     |              |              |   |   |     |   |   |   |
|                       |                 |              |    |    |   |   |   |   | E   | nai          | no           |   |   |     |   |   |   |
| T.,                   |                 |              |    |    |   |   |   |   | L   | ngi          | пе           |   |   |     |   |   |   |
| Jet engine            | 1.              | _            | 3. | _  | _ | _ | _ | _ | _   | _            | _            | _ | _ | _   | _ | _ | _ |
|                       |                 |              |    |    |   |   |   |   | Eo  | 11191        | tion         | 1 |   |     |   |   |   |
| Bernoulli equation    | <del>-</del> 1. |              |    |    |   |   |   |   | _   | <u>-</u>     | -            |   |   |     |   |   |   |
| Euler equation of     |                 | 2.           | _  | _  | _ | _ | _ | _ | _   | _            |              | _ |   | _   | _ | _ | _ |
| hydrodynamics         |                 | ۷.           |    |    |   |   |   |   |     |              |              |   |   |     |   |   |   |
| Euler turbomachinery  | _               | 2.           | _  | _  | - | _ | _ | _ | _   | _            | _            | _ | _ | _   | _ | _ | _ |
| equation              |                 |              |    |    |   |   |   |   |     |              |              |   |   |     |   |   |   |
|                       |                 |              |    |    |   |   |   |   | F   | act          | or           |   |   |     |   |   |   |
| Preheat factor        | _               | _            | _  | _  | _ | _ | _ | _ | _   | _            | _            | _ | _ | 14. | _ |   |   |
| 11011000 100001       |                 |              |    |    |   |   |   |   |     |              |              |   |   |     |   |   |   |
|                       |                 |              |    |    |   |   |   |   | F   | ailı         | ıre          |   |   |     |   |   |   |
| Fatigue failure       | $\frac{}{1}$ .  |              |    |    |   |   |   |   |     | _            | _            |   |   |     |   |   |   |
| rangue famure         | Τ.              |              |    |    |   |   |   |   |     |              |              |   |   |     |   |   |   |
|                       |                 |              |    |    |   |   |   |   |     | T            |              |   |   |     |   |   |   |
|                       |                 |              |    |    |   |   |   |   |     | Fai          | n            |   |   |     |   |   |   |
| Low pressure for      | 1.<br>1.        | 2.           | _  | _  | _ | _ | _ | _ | _   | _            | _            | _ | _ | _   | _ | _ | _ |
| Low pressure fan      |                 |              | -  | _  | _ | _ | _ | _ | _   | _            | _            | _ | _ | _   | _ | _ | _ |
| Radial fan            | 1.              | _            | 3. | _  | - | - | - | _ | -   | -            | -            | - | _ | -   | - | _ | - |
|                       |                 |              |    |    |   |   |   |   | 1   | <b>Г</b> 1~- |              |   |   |     |   |   |   |
| Camber of flow        |                 |              |    | 3. | _ |   |   |   |     | Flo          | W            |   |   |     |   |   |   |
|                       | _               | <del>-</del> | _  |    |   | _ | _ | _ | _   | _            | _            | _ | _ |     | _ | _ | _ |
| Flow separation       | _               | 2.           | _  | 3. | _ | _ | _ | _ | _   | _            | _            | _ | _ | 14. | _ | _ | _ |
| Potential flow        | _               | 2.           | _  | _  | _ | _ | _ | _ | _   | _            | _            | _ | _ | _   | _ | _ | _ |
|                       |                 |              |    |    |   |   |   |   |     |              |              |   |   |     |   |   |   |

|                             | Fluid           |   |
|-----------------------------|-----------------|---|
| Working fluid state         | 1               | _ |
|                             | Force           |   |
| Axial force                 | - 2             | _ |
| Force from bodies           | - 2             | _ |
| Force on blade              | - 2             | _ |
| Force on pipe               | - 2             | _ |
| Radial force                | - 2             | _ |
| Tangential force            | - 2             | _ |
| Pressure forces             | - 2             | - |
|                             | Gradient        |   |
| Pressure gradinet           | - 2             |   |
| Tressure gradinet           | 2.              |   |
|                             | Head            |   |
|                             | 1               |   |
|                             |                 |   |
|                             | Heating         |   |
|                             | 14              |   |
|                             |                 |   |
|                             | Humidity        |   |
| Dalativa hymidity           |                 |   |
| Relative humidity           | 14              | _ |
|                             | L market A      |   |
| 1 1 .                       | h-s chart       |   |
| h-s chart                   | - 2 <b>14.</b>  | - |
|                             | <b>T</b> 11     |   |
|                             | <b>Impeller</b> |   |
|                             | see Rotor       |   |
|                             | •               |   |
|                             | Inducer         |   |
|                             | 1 3             | - |
|                             | Law             |   |
| E' 6                        | Law             |   |
| First law of thermodynamics | 1               | _ |
| •                           |                 |   |
|                             | Line            |   |
| Camber line                 | 3               | - |
|                             |                 |   |

|                            |                |    |     |   |   |   |   |   |            | т    |      |          |   |     |   |   |   |
|----------------------------|----------------|----|-----|---|---|---|---|---|------------|------|------|----------|---|-----|---|---|---|
| A 1197 11                  |                |    |     |   |   |   |   |   | -          | Los  | SS   |          |   |     |   |   |   |
| Additional losses          | _              | -  | -   | _ | - | - | - | _ | _          | _    | -    | _        | - | 14. | - | _ | - |
| Internal losses            | 1.             | -  | -   | _ | - | - | - | _ | -          | -    | -    | _        | _ | _   | _ | _ | _ |
| Loss heat                  | _              | _  | -   | - | _ | - | - | - | -          | -    | -    | _        | - | 14. | _ | _ | - |
| Losses                     | 1.             | 2. | -   | - | _ | - | _ | - | -          | -    | -    | _        | _ | 14. |   | _ | _ |
| Pressure loss              | -              | -  | -   | _ | - | - | - | _ | -          | -    | -    | _        | _ | 14. |   | _ | _ |
| Reverse flow losses        | -              | -  | -   | _ | - | - | - | _ | _          | _    | -    | _        | - | 14. | _ | _ | - |
| Rotor friction loss        | -              | _  | _   | _ | _ | - | - | _ | _          | _    | _    | _        | _ | 14. | - | _ | - |
|                            |                |    |     |   |   |   |   |   | 3.7        |      |      |          |   |     |   |   |   |
| TT . 1:                    |                |    |     |   |   |   |   |   | NI         | ach  | ine  |          |   |     |   |   |   |
| Heat machine               | 1.             | _  | -   | - | - | - | - | - | -          | -    | -    | _        | _ | _   | _ | _ | - |
| Hydraulic machine          | 1.             | 2. | -   | - | - | - | - | - | -          | -    | -    | _        | _ | _   | _ | _ | _ |
| Vortex machine             | 1.             | -  | _   | - | - | - | - | - | -          | -    | -    | _        | _ | _   | _ | _ | _ |
| Working machine            | 1.             | -  | 3.  | - | - | - | - | - | -          | -    | -    | _        | _ | _   | - | _ | _ |
|                            |                |    |     |   |   |   |   |   |            |      |      |          |   |     |   |   |   |
|                            |                |    |     |   |   |   |   |   | M          | oist | ture | <u> </u> |   |     |   |   |   |
|                            | -              | -  | -   | - | - | - | _ | - | -          | _    | -    | -        | - | 14. | - | - | - |
|                            |                |    |     |   |   |   |   |   |            |      |      |          |   |     |   |   |   |
|                            |                |    |     |   |   |   |   | ] | Moı        | mei  | ntui | m        |   |     |   |   |   |
| Theorem of momentum change | -              | 2. | -   | - | _ | _ | - | - | -          | -    | -    | -        | - | -   | - | _ | - |
| change                     |                |    |     |   |   |   |   |   |            |      |      |          |   |     |   |   |   |
|                            |                |    |     |   |   |   |   |   | ľ          | Voi  | se   |          |   |     |   |   |   |
|                            | -              | -  | 3.  | - | - | - | _ | - | -          | _    | -    | -        | - | -   | - | - | - |
|                            |                |    |     |   |   |   |   |   |            |      |      |          |   |     |   |   |   |
|                            |                |    |     |   |   |   |   |   | Pa         | ass  | age  |          |   |     |   |   |   |
| Blade passage              | 1.             | _  | _   | _ | _ | _ | - | - | _          | _    | _    | -        | - | -   | - | - | - |
| Mean width of blade        | -              | -  | 3.  | - | - | - | - | - | -          | -    | -    | -        | _ | -   | - | _ | - |
| passage                    |                |    |     |   |   |   |   |   |            |      |      |          |   |     |   |   |   |
|                            |                |    |     |   |   |   |   |   | 1          | Pito | h    |          |   |     |   |   |   |
|                            | 1.             | 2. | _   | _ | _ | _ | _ | _ |            | _    | _    | _        | _ | _   | _ | _ | _ |
|                            |                |    |     |   |   |   |   |   |            |      |      |          |   |     |   |   |   |
|                            |                |    |     |   |   |   |   |   | P          | ow   | er   |          |   |     |   |   |   |
| Internal power             | <del>1</del> . | _  | _   | _ | _ | _ | _ | _ | _ <u>-</u> | _    | _    | _        | _ | _   | _ | _ | _ |
| Nominal power              | 1.             | _  | _   | _ | _ | _ | _ | _ | _          | _    | _    | _        | _ | _   | _ | _ | _ |
| Optimal power              | 1.             | _  | _   | _ | _ | _ | _ | _ | _          | _    | _    | _        | _ | _   | _ | _ | _ |
| Power input                | 1.             | _  | _   | _ | _ | _ | _ | _ | _          | _    | _    | _        | _ | _   | _ | _ | _ |
| •                          |                |    |     |   |   |   |   |   |            |      |      |          |   |     |   |   |   |
|                            |                |    |     |   |   |   |   |   | P          | rof  | ïle  |          |   |     |   |   |   |
|                            | 1.             | _  | 3.  | _ | _ | _ | _ | _ | _          | -    | _    | _        | _ |     | _ | _ | _ |
| Profile coordinates        |                | -  | 3.  | - | - | - | - | - | -          | -    | -    | -        | _ | -   | - | _ | - |
| Profile cross-section      |                |    | 3.  | _ | _ |   |   |   |            |      |      |          |   |     |   |   |   |
|                            | _              | _  | J . |   |   | _ | _ | _ | _          | -    | -    | -        | - | _   | _ | _ | _ |
|                            | _              | _  | ٥.  |   |   | _ | _ | _ | _          | _    | _    | -        | _ | _   | _ | _ | _ |

|                     |    |    |    |   |   |   |   |   | Pro                       | ope  | ller     |   |   |     |   |   |   |
|---------------------|----|----|----|---|---|---|---|---|---------------------------|------|----------|---|---|-----|---|---|---|
|                     | 1. | -  | -  | - | _ | - | _ | _ | -                         | _    | -        | - | - | -   | - | - | _ |
|                     |    |    |    |   |   |   |   |   |                           |      |          |   |   |     |   |   |   |
|                     |    |    |    |   |   |   |   |   | P                         | um   | p        |   |   |     |   |   |   |
| Feed pump           | 1. | -  | -  | _ | - | - | - | - | -                         | -    | -        | - | - | -   | - | - | - |
| Circualtion pump    | 1. | -  | -  | - | - | - | - | - | -                         | -    | -        | - | - | -   | - | - | - |
| Condensate pump     | 1. | -  | -  | - | - | - | - | - | -                         | -    | -        | - | - | -   | - | _ | - |
| Rotodynamic pump    | 1. | -  | -  | _ | _ | - | - | _ | -                         | _    | -        | - | - | -   | _ | - | - |
|                     |    |    |    |   |   |   |   |   | ъ                         | 10   |          |   |   |     |   |   |   |
| Mean radius         | 1  | 2. |    |   |   |   |   |   | K                         | adi  | us       |   |   |     |   |   |   |
| Mean square radius  | 1. |    | _  | _ | _ | _ | _ | _ | _                         | _    | _        | _ | _ | _   | _ | _ | _ |
| Weari square radius | Τ. |    |    |   |   |   |   |   |                           |      |          |   |   |     |   |   |   |
|                     |    |    |    |   |   |   |   |   | F                         | Rati | in       |   |   |     |   |   |   |
| Compression ratio   | _  | _  | _  | _ | _ | _ | _ | _ |                           | _    | _        | _ | _ | 14. | _ | _ |   |
| <b>-</b>            |    |    |    |   |   |   |   |   |                           |      |          |   |   |     |   |   |   |
|                     |    |    |    |   |   |   |   |   | Re                        | act  | ion      |   |   |     |   |   |   |
|                     | _  | 2. | _  | _ | _ | _ | _ | _ | _                         | _    | _        | _ | _ | 14. | _ | _ |   |
|                     |    |    |    |   |   |   |   |   |                           |      |          |   |   |     |   |   |   |
|                     |    |    |    |   |   |   |   |   | F                         | Rota | r        |   |   |     |   |   |   |
|                     | 1. | 2. | _  | _ | _ | _ | _ | _ | _                         | _    | _        | - | - | _   | - | _ | _ |
|                     |    |    |    |   |   |   |   |   |                           |      |          |   |   |     |   |   |   |
|                     |    |    |    |   |   |   |   |   | S                         | hap  | <b>e</b> |   |   |     |   |   |   |
| Droplet shape       | _  | _  | 3. | _ | _ | _ | _ | _ | _                         | _    | _        | - | _ | -   | - | - | _ |
|                     |    |    |    |   |   |   |   |   |                           |      |          |   |   |     |   |   |   |
|                     |    |    |    |   |   |   |   |   | Sl                        | hro  | ud       |   |   |     |   |   |   |
|                     | 1. | -  | -  | _ | _ | - | _ | _ | -                         | _    | -        | - | _ | -   | - | - | _ |
|                     |    |    |    |   |   |   |   |   |                           |      |          |   |   |     |   |   |   |
|                     |    |    |    |   |   |   |   |   | Sn                        | ubl  | ber      |   |   |     |   |   |   |
| Integral snubber    | _  | _  | 3. | _ | _ | _ | _ | _ | _                         | _    | _        | _ | _ | _   | _ | _ | _ |
|                     |    |    |    |   |   |   |   |   |                           |      |          |   |   |     |   |   |   |
|                     |    |    |    |   |   |   |   |   | $\mathbf{S}_{\mathbf{I}}$ | pac  | er       |   |   |     |   |   |   |
|                     | 1. | _  | _  | _ | _ | _ | _ | _ | _                         | _    | _        | - | - | _   | - | _ | _ |
|                     |    |    |    |   |   |   |   |   |                           |      |          |   |   |     |   |   |   |
|                     |    |    |    |   |   |   |   |   | S                         | pee  | ed       |   |   |     |   |   |   |
| Blade speed         | 1. | _  | -  | - | _ | _ | _ | _ | -                         | _    | -        | - | - | -   | - | _ | _ |
| Rotational speed    | 1. | -  | -  | - | - | - | - | - | -                         | -    | -        | - | - | -   | - | - | - |
| Specific speed      | 1. | _  | -  | - | _ | - | - | _ | -                         | _    | _        | - | _ | -   | - | _ | _ |
|                     |    |    |    |   |   |   |   |   |                           |      |          |   |   |     |   |   |   |

| G 1:                               | _        |     |     |    |   |   |   |     |             |       |                |       |   |     |   |   |   |
|------------------------------------|----------|-----|-----|----|---|---|---|-----|-------------|-------|----------------|-------|---|-----|---|---|---|
| Steam turbine                      | 1.       | _   | -   | -  | _ | - | - | -   | -           | _     | -              | _     | _ | _   | - | _ | _ |
| Water turbine                      |          | 2.  | -   | -  | _ | - | - | -   | -           | -     | -              | _     | _ | _   | - | _ | _ |
| Wind turbine                       | 1.       | _   | -   | -  | _ | - | - | -   | -           | _     | -              | _     | _ | _   | - | _ | _ |
|                                    |          |     |     |    |   |   |   |     |             |       |                |       |   |     |   |   |   |
|                                    |          |     |     |    |   |   |   | T   | urb         | och   | arg            | ger   |   |     |   |   |   |
|                                    | 1.       | _   | _   | _  | _ | _ | _ | _   | _           | _     | _              | _     | - | _   | _ | - | _ |
|                                    |          |     |     |    |   |   |   |     |             |       |                |       |   |     |   |   |   |
|                                    |          |     |     |    |   |   |   | Тиг | ·hoo        | nn    | nre            | essoi | • |     |   |   |   |
|                                    | 1.       |     |     |    |   |   |   | Tui | DU          | .0111 | ιрι            | 2301  |   | 14. |   |   |   |
| Efficiency of turbocompressor      | -        | _   | _   | _  | _ | _ | _ | _   | _           | _     | _              | _     | - | 14. | _ | _ | - |
| Multi-stage turbocompressor        | -        | -   | _   | -  | _ | - | - | -   | _           | -     | -              | -     | - | 14. | - | - | - |
| Thermodynamics of turbocompressors | -        | -   | -   | -  | - | - | - | -   | -           | -     | -              | -     | - | 14. | - | - | - |
| Turbocompressor blades             | -        | -   | -   | -  | - | - | - | -   | -           | -     | -              | -     | - | 14. | - | - | - |
| Turbocompressors cooling           | -        | -   | -   | -  | - | - | - | -   | -           | -     | -              | -     | - | 14. | - | - | - |
|                                    |          |     |     |    |   |   |   | Tu  | urb         | oma   | ach            | ine   |   |     |   |   |   |
| 26.11                              | 1.       | -   | -   | -  | - | - | - | -   | -           | -     | -              | _     | _ | -   | - | _ | _ |
| Multi-stage turbomachine           | 1.       | _   | _   | _  | _ | _ | _ | -   | _           | _     | _              | -     | _ | _   | _ | - | _ |
| Radial turbomachine                | 1.       | _   | _   | _  | _ | _ | _ | _   | _           | _     | _              | _     | _ | _   | _ | _ | _ |
| Tangential turbomachine            | 1.       | -   | -   | -  | - | - | - | -   | -           | -     | -              | -     | - | -   | - | - | - |
|                                    |          |     |     |    |   |   |   |     | Т.          | l     | . a a <b>4</b> |       |   |     |   |   |   |
|                                    |          |     |     |    |   |   |   |     | <u> 1 u</u> | rbo   | set            |       |   |     |   |   |   |
| Energy balance of                  | 1.<br>1. | _   | _   | _  | _ | _ | _ | _   | _           | _     | _              | _     | _ | _   | _ | _ | _ |
| turboset                           | Τ.       |     |     |    |   |   |   |     |             |       |                |       |   |     |   |   |   |
|                                    |          |     |     |    |   |   |   |     | -           | _     |                |       |   |     |   |   |   |
|                                    |          |     |     |    |   |   |   |     | 1-:         | s ch  | art            |       |   |     |   |   |   |
|                                    | -        | -   | -   | -  | - | - | - | -   | -           | -     | -              | -     | _ | 14. | - | - | _ |
|                                    |          |     |     |    |   |   |   |     | •           | Van   | e              |       |   |     |   |   |   |
|                                    | se       | е В | lad | е  |   |   |   |     |             |       |                |       |   |     |   |   | _ |
| Quide vanes                        | se       | e S | tat | or |   |   |   |     |             |       |                |       |   |     |   |   |   |
|                                    |          |     |     |    |   |   |   |     | <b>T</b> 7  |       | • ,            |       |   |     |   |   |   |
|                                    |          |     |     |    |   |   |   |     | V           | eloc  | eity           |       |   |     |   |   |   |
| Absolute velocity                  |          | 2.  |     | _  | _ | - | - | _   | -           | _     | _              | -     | - | -   | - | - | - |
| Circulation of velocity            | -        | 2.  |     | -  | _ | - | - | -   | -           | _     | _              | _     | - | -   | - | - | - |
| Mean aerodynamic velocity          | -        | 2.  | 3.  | -  | - | - | - | -   | -           | _     | -              | -     | - | _   | - | - | _ |
| Mean velocity                      | 1.       | -   | -   | -  | - | - | - | -   | -           | -     | -              | -     | - | -   | - | - | - |
| Relative velocity                  |          | 2.  | -   | -  | - | - | - | -   | -           | -     | -              | -     | - | -   | - | - | - |
| Velocity triangle                  | 1.       | 2.  | -   | -  | - | - | - | -   | -           | -     | -              | -     | - | -   | - | - | - |
|                                    |          |     |     |    |   |   |   |     |             |       |                |       |   |     |   |   |   |

|                     |    |    |   |   |   |   |   |   | V  | oluı            | me             |   |   |     |   |   |   |
|---------------------|----|----|---|---|---|---|---|---|----|-----------------|----------------|---|---|-----|---|---|---|
| Control volume      | _  | 2. | - | - | - | - | - | - | -  | -               | -              | - | - | -   | - | - | - |
|                     |    |    |   |   |   |   |   |   | ** | .7 - <b>•</b> - | - <b>1</b> - 4 |   |   |     |   |   |   |
|                     |    |    |   |   |   |   |   |   | V  | Veig            | nt             |   |   |     |   |   |   |
|                     | -  | 2. | - | - | - | - | - | - | -  | -               | -              | - | - | -   | - | - | - |
|                     |    |    |   |   |   |   |   |   | 1  | Vor             | ·k             |   |   |     |   |   |   |
| Euler work          | _  | 2. | - | - | - | - | - | - | -  | -               | -              | - | - | 14. | - | - | - |
| Ideal internal work | 1. | -  | - | - | - | - | - | - | -  | -               | -              | - | - | _   | - | _ | - |
| Internal work       | 1. | 2. | _ | _ | _ | _ | _ | _ | _  | _               | _              | _ | _ | 14. | _ | _ | _ |