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Equation for calculating forces acting on machine surfaces
from fluid flow

The forces acting from the fluid flow on the machine
surfaces can be determined from the momentum change theorem.
Its special form is also used to calculate the forces acting on the
blades in the blade row from the fluid flow, a classical problem in
turbomachinery.

The forces acting from the fluid flow on the machine
surfaces can be determined from the momentum change theorem
(Newton's second law). According to the momentum change
theorem, the change in fluid momentum over time is equal to the
sum of the external forces acting on the fluid in the control
volume. In the case of applying this law to a fluid enclosed in a
control volume VC (Figure 1), the external forces considered are:
the pressure forces from the surrounding fluid at the boundaries
of the control volume Fp, the weight of the fluid in the control
volume Fh, and the forces exerted by the bodies inside and at the
boundaries of the control volume Fb. The change in momentum
of the fluid inside the control volume is also equal to the
difference of the product of velocity and mass flow between the
inlet and outlet of the control volume [Bathie, 1984], [Kadrnožka
2003].

1: Theorem of momentum change
VC [m3] control volume; SC [m2] area of control volume boundary; V [m·s-1]
velocity of working fluid; M [N·s] momentum of fluid inside the control volume; t
[s] time; Fb [N] resultant of forces acting on working fluid from bodies inside and
on control volume boundary; Fh [N] weight of working fluid inside control volume;
Fp [N] forces from pressure of surrounding fluid on surface of control volume;
m• [kg·s-1] mass flow; g [m·s-2] gravitational acceleration; ar [m·s-2] centrifugal
acceleration; aC [m·s-2] Coriolis acceleration; p [Pa] pressure; m [kg] mass. The
derivation of the equation assuming steady fluid flow through the control volume is

shown in Appendix 11.
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When calculating turbomachine blade forces, define control
volume boundaries where parameters for momentum change
theorem are known. Therefore, the control volume in Figure 2 is
defined to pass through the center of the blade channel, or the
boundaries AD and BC are spaced apart by the pitch of blades1..
The boundaries AD and BC are the expected streamlines of the
relative velocities W of the velocity triangle1. of this blade row.
The blade passages are equal in a single blade row, so that the
action of the pressure forces at the AB boundaries cancel with the
action of the pressure forces at the DC boundaries. The
integration of the product of the absolute velocity V and the mass
flow is also cancelled at these boundaries, see Equation 2.

2: Force on blade from fluid flow
Both velocities and forces are vector quantities, but the arrow above the velocity
symbols in the velocity triangle is usually not shown. F [N] resultant of forces
acting on blade; W [m·s-1] relative velocity; U [m·s-1] blade speed; m• [kg·s-1]
amount of working fluid flowing through control volume; s [m] pitch of blade. The
derivation of the equation assuming steady fluid flow through the control volume is

shown in Appendix 12.

Typical for the investigation of forces in the turbomachine
stage is the use of cylindrical coordinate system1.. The force F in
the cylindrical coordinate system has three spatial components,
namely a component in the radial direction Fr, in the tangential
direction Fθ (this force produces torque) and in the axial direction
Fa (it causes stress on the rotor in the axial direction and is
collected by the thrust bearing) - these force components are
abbreviated as radial, tangential and axial forces.

The force acting on the blade is approximately perpendicular
to the mean aerodynamic velocity in the blade row Wm, which is
the mean of the relative velocities at the inlet W1 and outlet W2.
Respectively, it can be shown (see Equation 3) that the resulting
force on the blade from the incompressible fluid flow F is
perpendicular to the mean aerodynamic velocity wm in lossless
flow.

https://turbomachinery.education/appendices.html
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3: Definition of the mean aerodynamic velocity in the blade row and its relation to
the force vector acting on the elementary blade (blade length dr)

Wm [m·s-1] mean aerodynamic velocity in the blade series; βm [°] angle of mean
aerodynamic velocity; ε [°] angle of resultant force. This equation is derived for the
elementary blade length Δr and the axial blade grid in Appendix 13 and its validity

is limited to incompressible flow without losses (isoentropic - index is).

Equations for calculating energy distribution in
turbomachine stage

The design of the energy distribution or transformation in the
turbomachine stage is based on two directions. In the direction
perpendicular to the meridian direction1., the Euler work
distribution, which is the local value of the internal work, is
designed. In the meridional direction, the design of the reaction
stage, which describes the distribution of energy transformations
between the stator and the rotor of the stage, decides the
characteristics of the stage.

The Euler work is the fluid work transferred to the blades in
the surroundings of the streamline under investigation, see Figure
4(b). The difference with the internal work1. of the stage wi is that
the internal work of the stage is the average work of all the
working fluid flowing through the stage (including gaps) and can
be determined from the complete energy balance of the stage, see
Figure 4(a). So some of the fluid will do more Euler work than
others, but their average is wi. For real stages, the largest Euler
work is in the core of the flow (at the mean diameter of the
blades), where the losses are smallest. Conversely, at the edges of
the blades, or near their hubs and tips, the Euler work is smallest
due to high frictional losses and internal leakage. The Euler work
can be determined from the velocity triangles on the streamline
under investigation, see Equation 4(c) - Euler turbomachinery
equation.

https://turbomachinery.education/appendices.html
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4: Difference between Euler work and internal work of stage
wi [J·kg-1] internal work of stage; wE [J·kg-1] Euler work in surroundings of
investigated streamline; q [J·kg-1] shared heat with surroundings; ω [°] angular
speed. BST-stage boundary; S-stator blade row; R-rotor blade row, ψ-streamline.
The derivation of the Euler turbomachinery equation for the assumption of

stationary flow and no weight effect is shown in Appendix 14 or [Ingram, 2009].

Similarly, the stage efficiency can be determined in two
ways, either to the Euler work (Euler efficiency) or to the internal
work (internal stage efficiency), as done in Problem 4.

Reaction is the ratio between the change in the static
enthalpy in the rotor blade row and the change in the stagnation
enthalpy of the stage (Formula 5), or the change in the static
enthalpy of the stage - depending on convention [Kadrnožka,
2004], [Japikse, 1997], [Bathie 1984], [Ingram, 2009]. Thus, it
describes the distribution of the energy transformation between
the stator and rotor blade rows of the stage.

5: Definition of reaction

https://turbomachinery.education/appendices.html
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(a) definition of reaction; (b) simplified reaction formula for hydraulic machines,
where approximate equality of enthalpy and pressure energy changes can be
assumed (Δh≈Δp·ρ-1). Δhs [J·kg-1] difference between stagnation enthalpy at inlet to
stage and outlet from stage; ΔhR [J·kg-1] difference between static enthalpy at inlet
to rotor blade row and outlet from rotor blade row; Δps [Pa] difference between
stagnation pressure at inlet to stage and outlet from stage; ΔpR [Pa] difference
between pressure at the inlet to rotor blade row and outlet from rotor blade row;

ρ [kg·m-3] density.

Reaction is determined to a specific streamline (radius)
similar to Euler work. To calculate the reaction, it is important to
know the construction of the h-s diagram, from which the
differences in specific enthalpies Δhs and ΔhR can be determined
(see Problem 5, Problem 6). h-s diagrams and a description of
their construction are given in Figure 6. In the case of hydraulic
machines, the required pressure differences Δps and ΔpR can also
be determined from Bernoulli's equation for relative flow, see
Problem 7 and Problem 6.

6: h-s diagrams of turbomachine stages
left-turbine stages; right-working machine stages. These h-s diagrams are
constructed under the assumption of adiabatic flow without gravity effect. 1sw, 2sw

denote the overall condition with respect to the relative motion at the rotor inlet and
outlet. A detailed description of the construction of the h-s diagrams is shown in

Appendix 15.

Most stages are designed with a variable reaction over the
height of the blades, while a common requirement in stage design
is a reaction at a mean radius of about 0.5 (even a little higher for
radial stages due to the difference in blade speeds on the rotor),
since at maximum Euler work the absolute velocities in the stator
passages are about the same as the relative velocities in the rotor
passages, and hence the distribution of losses between stator and
rotor is uniform, see Figure 7.

https://turbomachinery.education/appendices.html
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7: Example of turbine axial stage blade passages with reaction of 0,5
With the same enthalpy differences between the stator and rotor, the velocity
triangles are symmetrical and the shape of the blade passages (A1≠A2) is also

symmetrical. 1sw relative stagnation state of working fluid at rotor inlet.

Laval turbines1. and Pelton turbines show minimal the
reaction. Among working machines, low reactions are used in
certain fans. At low reaction, compressive force on the rotor is
small, calling these stages equal pressure or impulse stages.
Conversely, stages with significant reaction yield greater
compressive force, termed overpressure or reaction stages.

In axial stages, as reaction increases, blade camber decreases
(required momentum change drops), reducing sensitivity to flow
separation from the profile decreases.

Equations for calculating velocity distribution at ideal flow in
turbomachine

Ideal flow equations are derived for ideal fluid flow without
internal losses. Although they are ideal flow equations, they are
crucial for basic design of turbomachinery flow components,
prediction of properties, analysis of the effect of flow component
shape on internal losses of the machine, and understanding the
causes of failures or problem operation of turbomachines.

The basic equations describing ideal flow velocities are the
potential flow equations. The flow is considered to be potential
(meaning that the velocity can only be calculated using the
coordinates of a point according to a potential function V=f(x, y,
z) in the case of a orthogonal coordinate system, or according to a
function V=f(r, θ, a) in the case of a cylindrical coordinate
system), where such a flow is referred to as an axisymmetric
potential flow. Other quantities of ideal flow can be calculated
from the energy equations and the Euler equation of
hydrodynamics.
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For potential flow, the curl velocity vector must be zero
throughout the volume (Equation 8a). For axisymmetric flow,
gradients of velocity components in the tangential direction
(Equation 8b) must be zero in a cylindrical coordinate system,
because the tangential coordinates are closed and the velocity at
the origin of the tangential axis must be identical to that at the
end of the coordinates. These conditions yield special velocity
Equations (8c-h), applicable to other fluid quantities.

8: Axisymmetric potential flow conditions
θ [°] azimuth in the cylindrical coordinate system; C [m2·s-1] constant (e.g., the
proposed magnitude of the product of the tangential component of the absolute
velocity Vθ on the mean radius). The modification of the equations is shown in

Appendix 16.

The product r·Vθ is called the circulation of the tangential
component of the velocity, which is constitutive, so it has the
same properties as the irrotational vortex [Škorpík, 2023, p.
1.40]. If the circulation is constant, then the difference of the
circulations in front of and behind the rotor is also constant and
then also according to the Euler work equation (Equation 4) the
Euler work of the potential flow will be constant along the length
of the blades, see Problem 8.

The equations of axisymmetric potential flow can also be
applied to spiral paths, for example in spiral passages (Problem
9) or in bladeless diffusers and confusers (Problem 10).

The Euler equation of hydrodynamics for potential flow can
also be used to calculate other state variables, for example, the
article Internal fluid friction and boundary layer development
[Škorpík, 2023b]. From this equation one can read, among other
things, that the pressure gradient of a potential flow without the
effect of gravitational acceleration cannot have a tangential
component, because the gradient of velocity or kinetic energy
does not have one either, see Problem 8.

https://turbomachinery.education/appendices.html
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Problems

Problem 1:
What force acts on the pipe between flanges due to fluid flow (see figure)? The
inner pipe diameter is 23 mm, the flange height difference is 1.2 m, static pressure
in the pipe versus outside pressure is 2 m water column, flow velocity is 4 m·s-1,
and it's frictionless flow. Water is flowing in the pipe. You are considering

frictionless flow. The solution to the problem is shown in Appendix 1.

d [m] pipe diameter; pat [Pa] atmospheric pressure; z [m] altitude coordinate.

1:  entry:  d; z; zH2O; V 4:  calculation:  Fh,x; A; m; p1; p2; Fp,x; Fx

2:  derivation:  eq. for Fx; Fy; Fz 5:  calculation:  VC; m; Fh,z; Fpz; Fz

3:  read off:  ρ; g; pat 6:  calculation:  Fy

The procedure for solving Problem 1, symbol descriptions are in Appendix 1.

Problem 2:
Determine the force and its components from the fluid flow acting on the radial fan
blade. 88,8 kg·h-1 of air flows through the fan, the pressure p1 upstream of the
impeller is atmospheric, the pressure difference between the impeller inlet and
outlet is insignificant and the number of blades is 52. The other parameters are:
r1=32,5 mm, r2=37,5 mm, V1=3,4 m·s-1, V2=9,34 m·s-1, α2=18,4°. The width of the

impeller is 30 mm. The solution to the problem is shown in Appendix 2.

r [m] r [m] radius; α [°] angle of absolute velocity.

https://turbomachinery.education/appendices.html
https://turbomachinery.education/appendices.html
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1:  entry:  m; p1; z; r1; r2; V1; V2; α2; b 2:  calculation:  V2r; Fr,p; Fr

3:  calculation:  V2θ; Fθ 4:  calculation:  F
The procedure for solving Problem 2, symbol descriptions are in Appendix 2.

Problem 3:
Calculate force on Kaplan turbine rotor blades from water flow and outlet pressure
p2. Blade tips radius: 1850 mm, hub radius: 985 mm, tangential velocity: 15,3 m·s-

1, axial velocity: 13 m·s-1, turbine RPM: 230,8 min-1. 56 m water column above
turbine. Velocity triangle shapes at mean radius shown in attached figure. The

solution to the problem is shown in Appendix 3.

A [m2] flow area. The index h indicates hub of the blade, the index m indicates the
mean square radius of the blade, the index t indicates the tip of the blade.

1:  entry:  rt; rh; V1θ; Va;
V2; N; z

4:  calculation:  rm; U; -W2θ; W1θ; Wmθ; Wm;
βm; ε; Fa; F

2:  read off:  ρ 5:  read off:  pat; g
3:  calculation:  A1; A2; Q; m; Fθ 6:  calculation:  V1; p1; p2

The procedure for solving Problem 3, symbol descriptions are in Appendix 3.

Problem 4:
Calculate the Euler work and Euler efficiency at the mean radius of the axial stage
of the steam turbine and the internal work and efficiency of this stage. The stage
has been designed by 1D design1. hence it has straight blades. The meridional
velocity is constant (V0a=V2a). The isentropic gradient of the stage is 21,3 kJ·kg-1.
The calculated total loss of the stage is 6 kJ·kg-1. The parameters of the velocity
triangles at the mean radius are: V1=W2=148,68 m·s-1, V0=V2=W1=63,249 m·s-1,

U1=U2=102,1 m·s-1. The solution of the problem is shown in Appendix 4.

https://turbomachinery.education/appendices.html
https://turbomachinery.education/appendices.html
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(a) cross-section of stage; (b) Euler work along height of blades; (c) energy balance
of stage in h-s diagram. h [J·kg-1] enthalpy; s [J·kg-1·K-1] entropy; wis [J·kg-1]
internal work of the stage at isentropic expansion (expansion without
losses);wEis [J·kg-1] Euler work at flow without losses; Lw [J·kg-1] internal losses of

the stage. The index s denotes the total state.

1:  entry:  Δhis; Lw; V1; W2; V0; V2; W1; U1; U2 3:  calculation:  wi

2:  calculation:  wE 4:  calculation:  wis; ηE; ηi

The procedure for solving Problem 4, symbol descriptions are in Appendix 4.

Problem 5:
Calculate the reaction of the axial stage of a steam turbine. If you know the

velocity triangle. The solution to the problem is shown in Appendix 5.

1:  entry:  V1; V2; W1; W2 3:  calculation:  wE; Δhs; R
2:  calculation:  ΔhR   
The procedure for solving Problem 5, symbol descriptions are in Appendix 5.

Problem 6:
Determine the reaction of a radial fan with forward curved blades if the stagnation
pressure increase in the fan is 135 Pa, the working gas density is 1,2 kg·m-3, the
blade speed at the outlet of the rotor is 10 m·s-1 and the blade speed at the inlet of
the rotor is 8,7 m·s-1. The rotor blade passages are designed for equality of relative

velocities (W1=W2). The solution to the problem is shown in Appendix 6.

https://turbomachinery.education/appendices.html
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1:  entry:  Δps; ρ; U2; U1 3:  calculation:  ΔhR; R
2:  calculation:  Δhs   
The procedure for solving Problem 6, symbol descriptions are in Appendix 6.

Problem 7:
Calculate the reaction of the Francis turbine at its mean radius. The radius of the
impeller at the inlet is 1 m. The absolute velocity in front of the impeller is 35 m·s-

1, behind the impeller is 12 m·s-1 (it has no tangential component). The turbine
RPM is 375 min-1. The angle of absolute velocity is 20°. The height difference
between the inlet and outlet of the impeller is 0,8 m. The solution to the problem is

shown in Appendix 7.

1:  entry:  r1; V1; V2; N; α1; Δz 4:  derivation:  equation for ΔpR

2:  derivation:  equation for Δps 5:  read off:  g; Lw,0-2; Lw,1-2

3:  calculation:  U1; V1θ; wE 6:  calculation:  R
The procedure for solving Problem 7, symbol descriptions are in Appendix 7.

Problem 8:
Calculate the parameters of the velocity triangle, pressure and reaction at the hub,
mean square radius and tip of the Kaplan turbine blade. The required Euler work is
548 J·kg-1. The rotor dimensions, RPM, axial velocity at the mean square radius,
and pressure behind the rotor are the same as in Problem 3. The absolute velocity at
the rotor exit has only the axial direction. Also determine the pressure gradient in
front of and behind the turbine rotor. Consider the potential flow of an ideal fluid.

The solution to the problem is shown in Appendix 8.

(a) pressure gradient in front of rotor; (b) changes in absolute and relative velocities
at investigated radii; (c) effect of change in relative velocities on shape of blade
passage, or blade twist; (d) distribution of tangential component of absolute
velocity in front of rotor; (e) distribution of pressure in front of rotor; (f)

distribution of reaction along blade height. β [°] angle of relative velocity.

https://turbomachinery.education/appendices.html
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1:  entry:  wE; rt; rh; N; Va; V2; p2; ρ 6:  calculation:  p1h; p1m; p1t

2:  calculation:  rm; Uh; Um; Ut; V1θh;
V1θm; V1θt

7:  calculation:  Δps; ΔpRh; ΔpRm;
ΔpRt; Rh; Rm; Rt

3:  calculation:  V1h; V1m; V1t; α1h; α1m; α1t 8:  derivation:  equation for grad p1

4:  calculation:  W1θh; W1θm; W1θt; W1h;
W1m; W1t; β1h; β1m; β1t

9:  derivation:  equation for Δp1

5:  calculation:  W2h; W2m; W2t; β2h; β2m;
β2t

  

The procedure for solving Problem 8, symbol descriptions are in Appendix 8.

Problem 9:
The purpose of the spiral casings of radial machines is to discharge or feed the
working fluid from/to the blade section. The flow in such a casing has a spiral path.
The figure shows a section of a radial fan with backward curved blades and a spiral
casing - suggest the dimensions of this spiral casing if there is a bladeless diffuser
between it and the rotor. Determine the pressure at the outlet of the bladeless
diffuser (between radii r2 and r3). Prove that when an incompressible fluid flows
through a radial duct of constant width b, the spiral path is a logarithmic spiral.
Discuss the effect of internal friction in the fluid on the shape of the spiral path.
What is the velocity and pressure distribution at the exit of the spiral casing?
Consider incompressible potential flow. Discuss the effect of casing width on the
radius of the casing. The parameters of the fan are R=0,65; r3=215 mm; r2=170
mm; r1=118,5 mm; b2=101,5 mm; b1=120 mm; N=1360 min-1. The increase in
stagnation pressure in the fan is 500 Pa. The air flow through the fan is 1200 m3·h-1

and its stagnation suction pressure is atmospheric at a density of 1,2 kg·m-3. The
solution of the problem and other conclusions are shown in Appendix 9.

(a) velocity triangles; (b) velocity profile at outlet of spiral casing; (c) pressure
profile at outlet of spiral casing. Ψ-spiral absolute velocity trajectory.

https://turbomachinery.education/appendices.html
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1:  entry:  R; r3; r2; r1; b2; b1;
Δps; N; Q; p1s; ρ

5:  calculation:  p3s; V3θ; V3r; V3; p3

2:  derivation:  equation for rθ 6:  proof:  α=const.
3:  calculation:  wE; U2; V2θ; C 7:  discussion:  on effect of friction
4:  calculation:  rθ for selected θ 8:  discussion:  velocity and pressure

distribution at casing
outlet

The procedure for solving Problem 9, symbol descriptions are in Appendix 9.

Problem 10:
Design the outlet radius of the bladeless diffuser of a radial compressor, which is
drawn in the figure. The stage parameters are: V2θ=300 m·s-1, V2r=90 m·s-1,
r2=33 mm, p2=200 kPa, t2=82,9 °C. The stator pressure rise is 80 kPa. The working
gas is air. Find also whether the angle between the absolute velocity in the
bladeless diffuser and its tangential component (between radii r2 and r3) changes.
Consider the compressible potential flow. The solution to the problem is shown in

Appendix 10.

(a) rotor-bladeless diffuser assembly and inlet and outlet casing; (b) bladeless
diffuser section; (c) absolute velocity at the inlet and outlet of the bladeless

diffuser.

1:  entry:  V2θ; V2r; r2; p2; ΔpS; t2 4:  solution:  r3 z m2=m3

2:  read off:  h3; t3 from h-s diagram 5:  calculation:  α2; α3

3:  calculation:  V3; ρ3 6:  comapare:  α2 vs α3

The procedure for solving Problem 10, symbol descriptions are in Appendix 10.
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